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Coefficient of normal restitution of viscous particles and cooling rate of granular gases

Thomas Schwager* and Thorsten Po¨schel†

Institut für Physik, Humboldt-Universita¨t zu Berlin, Invalidenstraße 110, D-10115 Berlin, Germany
~Received 19 May 1997!

We investigate the cooling rate of a gas of inelastically interacting particles. When we assume velocity-
dependent coefficients of restitution the material cools down slower than with constant restitution. This be-
havior might have a large influence to clustering and structure formation processes.@S1063-651X~97!00112-8#

PACS number~s!: 83.70.Fn, 62.40.1i, 81.40.Lm, 05.40.1j
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The behavior of granular gases has been of large scien
interest in recent time. Goldhirsch and Zanetti@1# and Mc-
Namara and Young@2# have shown that a homogeneo
granular gas is unstable. After some time one observes d
regions~clusters! and voids. To evaluate the loss of mecha
cal energy due to collisions one introduces the coefficien
~normal! restitution

g85eg, ~1!

where g5ugW u and g85ugW 8u, describing the loss of relative
normal velocityg8 of a pair of colliding particles after the
collision with respect to the impact velocityg.

It can be shown that even for three particles for a cert
region of the coefficient of restitution there exist initial co
ditions that lead to a behavior called ‘‘inelastic collapse
This means that the particles accomplish an infinite num
of collisions in finite time@2#. The conditions under which
one can observe inelastic collapse have been studied in
dimensional systems@3# as well as in higher dimensions@4#.
Recently it was shown numerically that the probability for
collapse rises significantly when the particles have rotatio
degree of freedom@5#. In this case the collapse is possible f
much larger coefficients of restitution than for nonrotati
particles. Other interesting related results concern boun
ball experiments on vibrating tables where complicated
namical behavior is observed~e.g., @6#!. Recently, compli-
cated and under certain circumstances irregular motion
bouncing cantilever of an atomic force microscope when
cited by a transducer was investigated@7#.

In the investigations@1–7# the approximation of the con
stant coefficient of restitution was assumed. Solving v
coelastic equations for spheres, it was shown that the co
cient of normal restitutione is not a constant but a functio
of the impact velocitye(g) itself @8,9#. For the ‘‘compres-
sion’’ j5R11R22urW12rW2u of particles with radiiR1 andR2
at positionsrW1 and rW2 one finds

j̈1rS j3/21
3

2
AAjj̇ D50, ~2!

r5
2YAReff

3meff~12n2!
. ~3!
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Y is the Young modulus,n the Poisson ratio, and

meff5
m1m2

m11m2
, ~4a!

Reff5
R1R2

R11R2
~4b!

are the effective radius and mass of the grains, respectiv
A is a material constant depending on the Young modu
the viscous constants and the Poisson ratio of the mate
Equation ~2! was derived under the precondition that t
colliding spheres have impact velocity much less than
speed of sound in the particle material. For details see@8#.
The initial conditions for solving Eq.~2! are

j~0!50, ~5a!

j̇~0!5g. ~5b!

The coefficient of restitutione of at time t50 colliding
spherical grains can be found from this equation relating
relative normal velocitiesg5 j̇(0) at time of impact and a
time tc , when the particles separate after the collision, i.e.tc
is the collision time:

e52 j̇~ tc!/ j̇~0!. ~6!

The ~numerical! integration of Eq.~6! yields the coefficient
of restitution as a function of the impact velocity~see Fig. 1
in @8#!, which is in good agreement with experimental da
@10#. A constant coefficient of restitution, however, doesnot
agree with experimental experience@11#. Other theoretical
work on this topic can be found, e.g., in@12,13#.

Consider a gas of granular particles at a given init
granular temperatureT0 . Then the question arises how th
temperature decreases with time due to inelastic collisio
This problem has been investigated earlier@14,15# for the
case of constant coefficient of restitution and the resul
~see also@16#!

T~ t !5T0~11t/t!22. ~7!

The time scalet is a material constant. The temperature d
cay ~7! is the origin of the cluster instabilities that have be
investigated recently@1,2#.

The aim of the present paper is to derive an explicit a
lytic expression for the coefficient of normal restitutione(g)
650 © 1998 The American Physical Society
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57 651COEFFICIENT OF NORMAL RESTITUTION OF . . .
as a function of the impact velocityg. A direct consequence
of this result will be a refined expression for the temperat
decay of a granular gas.

The duration of collisiontc
0 for the undamped problem

(A50) is given by@17#

tc
05

Qc
0

r2/5g1/5. ~8!

We want to point out here thatQc
0 is a constant pure numbe

not depending on any material properties. Hence,tc
0 depends

only on the material constantr and on the initial velocityg.
We use Eq.~8! to define a rescaled dimensionless timeQ:

Q5r2/5g1/5t. ~9!

Using the abbreviations

v5r2g, ~10a!

a5 3
2 A ~10b!

and a new set of variables

Q5r2/5g1/5t5v1/5t, ~11a!

x~Q!5r2j~ t !, ~11b!

we rewrite Eq.~2! in the form

ẍ1av21/5ẋAx1v22/5x3/250 ~12!

with ẋ5(d/dQ)x. We see that

dx

dt
~0!5

1

r2

dj

dt
~0!5

g

r2 5v5v1/5
dx

dQ
~0!. ~13!

Hence the initial conditions in our new variablesx and Q
read

x~0!50, ~14a!

dx

dQ
~0!5 ẋ~0!5v4/5. ~14b!

Both equations of motion,~2! and ~12!, become special a
x50 or j50, respectively, i.e., all derivatives of third orde
and higher diverge. This will be shown for the case ofx:

d

dQ
ẍ52

d

dQ
~av21/5ẋAx1v22/5x3/2!

5av21/5S ẍAx1
ẋ

2Ax
D 2

3

2
v22/5ẋAx. ~15!

Hence

lim
x→0

d3

dQ3 x56`, ~16!

and so are the higher derivatives. Because of this singula
we must not expandx in powers ofQ. Because of the initial
conditionsx(Q) has the form
e

ity

x~Q!5v4/5Q„11h~Q!…, ~17!

h~0!50, ~18!

which defines the functionh~Q!. Using transformation~17!
we find

Qḧ12ḣ1av1/5Q3/2ḣA11h1~av1/5AQ1Q3/2!~11h!3/2

50. ~19!

In Eq. ~19!, termsQ0.5 andQ1.5 occur, therefore we expan
h in powers ofAQ:

h5 (
k50

`

akQ
k/2. ~20!

The first coefficienta0 vanishes because of the initial cond
tion for x. When we require

ḣ5
a1

2AQ
1a21••• ~21!

to be finite atQ50 the second coefficienta1 must vanish as
well. With Taylor expansion ofA11h and (11h)3/2 for
small h we arrive at

h52
4

15
av1/5Q3/22

4

35
Q5/21

3

70
av1/5Q41

1

15
a2v2/5Q3

1••• ~22!

and therefore

x5v4/5Q2
4

15
avQ5/22

4

35
v4/5Q7/21

1

15
a2v6/5Q4

1
3

70
avQ52

38

2475
a3v7/5Q11/21

1

175
v4/5Q61••• .

~23!

Rearranging the full series~23! one finds

x5v4/5S Q2
4

35
Q7/21

1

175
Q61••• D1avS 2

4

15
Q5/2

1
3

70
Q51••• D1a2v6/5S 1

15
Q41••• D1•••

5v4/5x0~Q!1avx1~Q!1a2v6/5x2~Q!1••• . ~24!

v4/5x0 is the solution of the undamped~elastic! collision ~see
dashed line in Fig. 1!. The full line in Fig. 1 shows the
damped motion according to Eq.~23!. The direct numerical
integration of Eq.~12! collapses with the full line.

For x( 1
2 Qc

0), whereQc
0 is the duration of the undampe

collision, one finds using Eq.~24!:

xS Qc
0

2 D 5v4/5x0S Qc
0

2 D 1avx1S Qc
0

2 D 1a2v6/5x2S Qc
0

2 D 1•••

5v4/5B01avB11a2v6/5B21••• , ~25!
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652 57THOMAS SCHWAGER AND THORSTEN PO¨ SCHEL
which we do not need now but will later on.
Note that the coefficientsBk are constants; i.e., they d

not depend onv nor on material constants.
Equations~2! and ~12!, respectively, hold for the entire

collision. The collision starts withv and ends withv8. For
practical purposes we now define the terminverse collision.
The inverse collision is a collision that starts at timeQc with
relative velocityv8 and ends at time 0 with relative velocit
v, i.e., time runs in an inverse direction during the inve
collision. The equation of motion forxinv, i.e., for a collision
in inverse time, follows from Eq.~12!. Since the inverse
collision starts withv8 we have to replacev by v8. Because
of the time reversal we have to change the sign of ti
derivatives of odd orders, i.e.,ẋ→2 ẋinv. The equation of
motion for the inverse collision reads

ẍinv2a~v8!21/5ẋinvAxinv1~v8!22/5~xinv!3/250. ~26!

A motion due to Eq.~26! in normal time would be an acce
erated one. However, we shall mention here that Eqs.~12!
and~26! describe strictly the same physical motion. The s
lution xinv of the inverse problem can be derived from t
solution of the direct problem replacinga→2a andv→v8.

FIG. 1. The dynamics of the collision. The dashed line sho
the ~strictly symmetric! solution of the undamped collision. For th
case of the damped motion~full line! the maximum penetration
depth is achieved earlier whereas the duration of the collisio
longer (Qc.Qc

0).
e

e

-

xinv~Q8!5~v8!4/5x0~Q8!2av8x1~Q8!1a2~v8!6/5x2~Q8!

1••• . ~27!

Now we determine the collision timeQc and the final veloc-
ity. One direct method to calculateQc would be to determine
the solution ofx(Q)50 using Taylor expansion ofx in the
region close toQc

0 . It can be seen easily that this metho
fails since all derivatives of (dn/dQn)x with n>3 diverge
for Q5Qc

0 . ThereforeQc has to be calculated by an indire
method.

The problem will be subdivided into two parts~see Fig.
2!: ~a! the motion of the particlesx from Q50 to timeQm
when x approaches its maximum and whereẋ changes its
sign, and~b! from Qm to Qc .

In the case of undamped motion wherea50 we have
Qm5Qc

0/2. In part~b! we do not consider the collision itse
but the inverse problem in the interval~Q50, Qm8 !, with Qm8
being the time wherexinv approaches its maximum. The con
tinuity of both parts meansx(Qm)5xinv(Qm8 ).

For finite dampingaÞ0 we write Qm5Qc
0/21d and

Qm8 5(Qc
0)8/21d8 and recall thatQc

05(Qc
0)8. To get an ex-

pression ford we expand

s

is

FIG. 2. Sketch of the calculation. In~a! QP(0,Qm) is calcu-
lated directly. In~b! we define theinverse collisionwhere the par-
ticles start with velocity v8 and velocity approaches zero a
Q5Qm . Both curves have to fit together smoothly.
ẋS Qc
0

2
1d D 505 ẋS Qc

0

2 D 1d ẍS Qc
0

2 D 1
d2

2

d3

dQ3 xS Qc
0

2 D 1••• ~28!

5v4/5F ẋ0S Qc
0

2 D 1d ẍ0S Qc
0

2 D 1
d2

2

d3

dQ3 x0S Qc
0

2 D 1•••G1vaF ẋ1S Qc
0

2 D
1d ẍ1S Qc

0

2 D 1
d2

2

d3

dQ3 x1S Qc
0

2 D 1•••G1v6/5a2F ẋ2S Qc
0

2 D 1d ẍ2S Qc
0

2 D
1

d2

2

d3

dQ3 x2S Qc
0

2 D 1•••G ~29!

and usingẋ0(Qc
0/2)50 ~v4/5x0 is the solution of the undamped problem!

d52av1/5
ẋ1~Qc

0/2!

ẍ0~Qc
0/2!

1O~a2!. ~30!
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The expression~30! has to be inserted into the Taylor expansion ofx(Qc
0/21d):

x~Qc
0/21d!5v4/5Fx0S Qc

0

2 D 1d ẋ0S Qc
0

2 D 1
d2

2
ẍ0S Qc

0

2 D 1•••G1avFx1S Qc
0

2 D 1d ẋ1S Qc
0

2 D 1
d2

2
ẍ1S Qc

0

2 D 1•••G ~31!

5v4/5x0S Qc
0

2 D 1avx1S Qc
0

2 D 2
a2v6/5

2

ẋ1
2~Qc

0/2!

ẍ0~Qc
0/2!

1a2v6/5x2S Qc
0

2 D 1O~a3!. ~32!

Hence

x~Qm!5v4/5x0~Qc
0/2!1avx1~Qc

0/2!1a2v6/5Fx2S Qc
0

2 D 2
1

2

ẋ1
2~Qc

0/2!

ẍ0~Qc
0/2!G1••• . ~33!

Replacing againv→v8 anda→2a yields

d85a~v8!1/5
ẋ1~Qc

0/2!

ẍ0~Qc
0/2!

1O~a2!, ~34!

xinv~Qm8 !5~v8!4/5x0~Qc
0/2!2av8x1~Qc

0/2!1a2~v8!6/5Fx2S Qc
0

2 D 2
1

2

ẋ1
2~Qc

0/2!

ẍ0~Qc
0/2!G1••• . ~35!

As explained above both solutions~33! and ~35! have to be equal. With

b5x2S Qc
0

2 D 2
1

2

ẋ1
2~Qc

0/2!

ẍ0~Qc
0/2!

~36!

we write

v4/5x0S Q0
c

2 D 1avx1S Q0
c

2 D 1a2v6/5b5~v8!4/5x0S Q0
c

2 D 2av8x1S Q0
c

2 D 1a2~v8!6/5b. ~37!

We expandv8 in a,

v85v1av11a2v21••• , ~38!
on
and find

v4/5x0S Q0
c

2 D 1avx1S Q0
c

2 D 1a2v6/5b

5v4/5S 11
dv
v D 4/5

x0S Q0
c

2 D 2avS 11
dv
v D x1S Q0

c

2 D
1a2v6/5S 11

dv
v D 6/5

b, ~39!

with dv5av11a2v21••• . Writing (11dv/v)n/5 in pow-
ers ofa and comparing coefficients yields finally

v85vS 11
5

2
av1/5

x1~Qc
0/2!

x0~Qc
0/2!

1
15

4
a2v2/5S x1~Qc

0/2!

x0~Qc
0/2!

D 2

1••• D
5v~12av1/5C11a2v2/5C21••• !, ~40!

with
C15
5

2

x1~Qc
0/2!

x0~Qc
0/2!

~41a!

C25
15

4 S x1~Qc
0/2!

x0~Qc
0/2!

D 2

. ~41b!

SinceQc
0 depends on neither any material properties nor

the impact velocityg or v, respectively,C1 andC2 are pure
numerical constants. EvaluatingC1 and C2 in Eq. ~41! nu-
merically yieldsC151.15344 andC250.79826.

For coefficients of normal restitution one gets

e5
v8

v
512av1/5C11a2v2/5C21••• ~42a!

512C1Ar2/5g1/51C2A2r4/5g2/51••• ,
~42b!

with g being the impact velocity~Fig. 3!. For the duration of
the collision we find with Eqs.~30!, ~35!, and~40!
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tc5S Qc
0

2
1d D v21/51S Qc

0

2
1d8D ~v8!21/5

5Qc
0v2 1/5S 12

1

4
av1/5

x1~Qc
0/2!

x0~Qc
0/2!

D 1O~a2!

5Qc
0v2 1/5S 11

1

10
C1av1/5D1O~a2!

5Qc
0r22/5g21/5S 11

1

10
C1ar2/5g1/5D1O~a2!. ~43!

Qc5v1/5tc5Qc
0~11 1

10C1av1/5!1O~a2!. ~44!

FIG. 3. The coefficient of restitution over impact velocity due
Eq. ~42!. As expected for small relative velocity the particles colli
almost elastically. The result of numerical integration of Eq.~6!
coincides with the curve. The two curves cannot be distinguishe
the plot.
tt

n

To check the theoretical result@Eqs. ~41!# we integrated
numerically Eq. ~12! and received the curvese(v) and
Qc(v). Then we fittedC1 and C2 to these data using Eqs
~42! and ~44!. For instance, for a50.05 we found
C1

num51.15356 andC2
num50.80439 from the curvee(v) @see

Eq. ~42!#. The fit of C1 to Qc(v) @see Eq.~44!# gives
C1

num51.15342. For other values ofa we found very similar
numbers. Hence, the numerical results agree with theory

When we use the velocity-dependent coefficient of re
tution in the collision term of the Boltzmann equation

Ṫ;E E dv1dv2~12e2!uv12v2u3f ~v1! f ~v2! ~45!

we get the cooling rate for dissipative gas:

T;T0 /~11t/t8!5/3. ~46!

Our final result, Eq.~42!, shows that for viscoelastic collid
ing smooth bodies the coefficient of normal restitution is
decreasing function with rising impact velocity: 12e;g1/5.
A direct consequence is the cooling rate of a granular
@Eq. ~46!#: a granular gas consisting of viscoelastic partic
cools down significantlyslower than a gas of particles tha
collide with constant coefficient of restitution@see Eq.~7!#.
Due to our understanding it is not self-evident whether
clustering observed in granular gases of the latter type,
the extreme case of this effect, the inelastic collapse,
change their overall behavior or whether they exist at
These questions should be reconsidered in detail
velocity-dependent restitution.

The authors are grateful to N. Brilliantov, S. Esipov, H
Herrmann, F. Spahn, and W. Young for helpful discussio
and J.-M. Hertzsch for providing relevant literature.
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